Reactions of Tellurium Oxides with Alkali-metal Oxides and Hydroxides

By E. Gutierrez-Rios, M. L. Veiga, and Carlos Pico,* Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain

The double oxides Na_2TeO_4 , K_2TeO_4 , K_2TeO_3 , and the triple oxides $Na_4Te_2O_7$ and $K_4Te_2O_7$ have been prepared by solid-state reactions of TeO₃ and TeO₃ H_2O with M₂O and M[OH] (M = Na or K) and have been characterised by their X-ray diffraction patterns. The transformations and structures of the products obtained are discussed.

TELLURIUM differs from the other elements of Group 6B in its tendency to form mixed oxides with metallic elements. These compounds have typically ionic crystalline structures in which tellurium is present in its VI and/or IV oxidation states.^{1,2} Relatively few studies have been carried out on the mixed anhydrous oxides of tellurium and alkali metals obtained by solid-state reactions.3-5 The methods of synthesis used in this study avoid high temperatures or pressures and permit polycrystalline compounds to be obtained which are normally pure and from which it is hoped to produce single crystals, to enable a complete structural characterisation to be achieved. The solid phases obtained which correspond to the mixed oxides of tellurium-(VI) and -(IV) have not previously been described in the literature.

In previous studies, 'tellurates-(VI) and -(IV)' were prepared in good yield by other synthetic methods from orthotelluric acid, H₆TeO₆, and alkali-metal hydroxides. These preliminary results allowed the prediction of the experimental conditions and processes described in this paper.⁶ Thus the solid-state reactions have been studied to characterise the stable compounds in the M_2O (M = Na or K) $-TeO_3$ -TeO₂ ternary system. The reactions of $TeO_3 \cdot H_2O$ (usually called metatelluric acid) with sodium and potassium hydroxides at intermediate temperatures, and the reactions of TeO₃ with alkali-metal oxides in air at up to 700 °C, have also been studied and the reaction products have been identified. The synthesised compounds can be represented as solid phases of double oxides: $TeO_3 \cdot M_2O$, $TeO_2 \cdot M_2O$, and $Te_2O_5 \cdot 2M_2O$.

RESULTS AND DISCUSSION

The reaction characteristics and conditions together with the structures of the products obtained are given in Table 1.

Reactions of TeO₃·H₂O.—The synthesis of Na₂TeO₄ and $K_2 TeO_4$ from a mixture of $TeO_3 \cdot H_2O(s)$ and M[OH](s)(M = Na or K) in 1:2 molar ratio has been verified by heating to constant weight at 400 and 300 °C (for Na_2TeO_4 and K_2TeO_4 respectively) in air for 24 h.

- ¹ J. Galy, Nat. Bur. Stand. Special Publ., 1972, **364**, 29. ² G. Bayer, Fortschr. Mineral., 1969, **46**, 42. ³ P. Tarte and J. Preudhomme, Compt. rend., 1971, **C272**, 212. ⁴ R. Julien, P. Khodada, and J. Dugué, Bull. Soc. chim. France, 1971, **10**, 3418. ⁵ W. A. Hart and F. Pereral, (D. Preuder, C. Station, Station, Station, Station, C. Station, St

The preliminary operations were carried out in an inert atmosphere. The process [Table 1, reactions (i) and (ii)] can be represented by equation (1).

$$\frac{\text{TeO}_3 \cdot \text{H}_2\text{O}(s) + 2 \text{ M}[\text{OH}](s) \longrightarrow}{\text{M}_2\text{TeO}_4(s) + 2 \text{ H}_2\text{O}(g)} (1)$$

Quantitative chemical analysis carried out on the solid Na₂TeO₄ phase (whitish yellow, microcrystalline) and K_2 TeO₄ (white, microcrystalline) and the parameters

TABLE 1 Reactions of tellurium oxides with alkali-metal oxides and hydroxides

Dee	~	

icac-				
tion	Reactants	Conditions	Product	System
(i)	TeO ₃ ·H ₂ O +	400 °C, in air	Na_2TeO_4	Orthorhombic
	2 Na[OH]			
(ii)	TeO ₃ ·H ₂ O +	300 °C, in air	K ₂ TeO ₄	Monoclinic
	2 K[OH]			
(iii)	$TeO_3 + Na_2O$	650 °C, in air	Na ₄ Te ₂ O ₇	Orthorhombic
(iv)	$TeO_3 + K_2O$	500 °C, in air	K,Te2O7	Orthorhombic
(\mathbf{v})	$TeO_{\mu} + K_{a}O$	700 °C. in air	K.TeO.	Tetragonal

deduced for the unit cell are listed in Table 2. The systematic absences observed in the X-ray photographs indicated that Na₂TeO₄ belongs to the P222 or Pmmm space groups while that of $K_2 TeO_4$ is P2/m.

Although some of these compounds with alkali metals have been known for a long time 7 (supposedly as derivatives of polymetatelluric acid, H₂TeO₄), the crystallographic data published are not reliable since the results of Patry,⁷ who suggested isomorphism between $K_2[SO_4]$, K_2SeO_4 , and K_2TeO_4 , are not considered to be consistent. The four-co-ordination of tellurium in these compounds seems to be supported by spectroscopic data,8 although in Na, TeO, tellurium should be six-co-ordinate, as is customary for tellurium(vi) compounds. Mössbauer spectroscopic results ⁹ for Na₂TeO₄ are compatible with six-co-ordination for tellurium, and the existence of polymeric anions formed by Te^{VI}O₆ octahedrons joined at two vertices has been suggested by analogy with other alkali-metal oxo-derivatives whose structures are well known.10

However, no substantial differences were observed in the i.r. spectra of Na₂TeO₄ and K₂TeO₄ obtained in this

- ⁶ C. Pico and E. Gutierrez-Rios, Anales de Quim., in the press. ⁷ M. Patry, Compt. rend., 1936, **202**, 1518.

- P. Tarte and F. Leyder, Compt. rend., 1971, C273, 852.
 N. E. Erickson and A. G. Maddock, J. Chem. Soc. (A), 1970, 1665
 - ¹⁰ O. Lindqvist, Acta Chem. Scand., 1972, 26, 4107.

⁵ W. A. Hart and F. Beumel, 'Pergamon Texts in Inorganic Chemistry,' Pergamon Press, Oxford, 1975, vol. 13.

study, and these compounds will be subjected to further research to clarify their structural nature.

When a mixture of $TeO_3(s)$ and $K_2O(s)$ is heated at 700 °C under the same conditions as those previously described [Table 1, reaction (v)] the compound K_2TeO_3 is obtained, while the reaction with sodium oxide at this

Reactions of TeO_3 .—The reactions of amorphous tellurium trioxide with sodium and potassium oxides give

			TABLE 2			
	А	nalytical, crystall	ographic, and densi	ty results		
	Analysis (%) *			Cell constant	Density (g cm ⁻³)	
Product	TeO3	M ₂ O	TeO2	(Å)	Crystallographic	Expt.
Na ₂ TeO ₄	73.6 (73.9)	26.2 (26.1)		$egin{array}{c} a & 5.19 & (4) \ b & 6.32 & (2) \ c & 5.97 & (2) \end{array}$	5.00	4.98
K2TeO4	64.8 (65.1)	34.7 (34.9)		$ \begin{array}{c} a & 5.47 \\ b & 10.55 \\ c & 4.62 \\ \end{array} (0) $	5.05	5.01
Na4Te2O7	37.9 (38.2)	27.3 (27.0)	35.0 (34.8)	$egin{array}{rcl} eta &= 93.6^{\circ} \ a & 7.37 \ (6) \ b & 5.50 \ (2) \ a & 6.16 \ (2) \end{array}$	3.22	3.11
$K_4Te_2O_7$	33.2 (33.5)	35.8 (36.0)	30.2 (30.5)	c 6.16 (3) a 7.23 (2) b 5.72 (1) c 6.20 (0)	3.04	2.97
$K_2 TeO_3$		37.0 (37.1)	62.8 (62.9)	c = 6.92 (0) a = 7.88 (2) c = 7.45 (1)	3.64	3.46

* Calculated values are given in parentheses.

solid products containing Te^{IV} and Te^{VI}. The preparation of compounds of stoicheiometry $M_4Te_2O_7$ has been carried out using a method similar to that previously described, but by heating in air at 650 and 500 °C (for sodium and potassium derivatives respectively) mixtures of TeO₃(s) and $M_2O(s)$ in 1 : 1 molar proportions [Table 1, reactions (iii) and (iv)]. The process can be represented by equation (2).

$$2\text{TeO}_3(s) + 2M_2O(s) \longrightarrow M_4\text{Te}_2O_7(s) + 0.5 O_2(g)$$
 (2)

The chemical analysis of $Na_4Te_2O_7$ (whitish, polycrystalline) and $K_4Te_2O_7$ (whitish yellow) and their unitcell parameters are listed in Table 2. The possible space groups deduced for both compounds are P222 and Pmmm and P222, Pmm2, and Pmmm respectively. The densities determined by picnometry are in satisfactory agreement with those obtained crystallographically.

The existence of double oxides of tellurium of stoicheiometry M^I₄Te₂O₇ was demonstrated by Moret *et al.*¹¹ with the Li₂O-TeO₂ system. Only Li₄Te₂O₇, which has a triclinic structure, has been described. These compounds can be considered to be derivatives of ditellurium pentaoxide Te₂O₅ (Te^{VI}O₃·Te^{IV}O₂) ¹² and the corresponding alkali-metal oxide M_2O in a 1:2 molar ratio. The structural data reported here give further information on this new type of oxide. The characteristics of lithium, principally those related to its small size and high charge density,⁵ could make the crystalline symmetry of Li₄Te₂O₇ very different from that of its sodium and potassium analogues. The sodium and potassium compounds possess similar unit-cell parameters and their differences can be attributed to the different sizes of the atoms.

¹¹ J. Moret, A. Norbert, and D. Cachau-Herreillat, Compt. rend., 1973, **C276**, 677.

¹² O. Lindqvist and J. Moret, Acta Cryst., 1973, B29, 643.

temperature gives the double oxide $Na_4Te_2O_7$ together with another possible phase which could not be identified. The reaction with K_2O can be represented by equation (3).

$$\text{TeO}_3(s) + \text{K}_2\text{O}(s) \longrightarrow \text{K}_2\text{TeO}_3(s) + 0.5 \text{ O}_2(g)$$
 (3)

The analytical, crystallographic, and density data for K_2 TeO₃ are in Table 2. The c/a quotient is 0.945 and the possible space group $P\overline{4}m2$.

The structural aspects of the double oxides of Te^{IV} with alkali metals have been little studied with the exception of Li₂TeO₃,¹³ which has orthorhombic symmetry, space group P222, and parameters a = 8.79, b = 10.52, and c = 7.10 Å; its structure is probably of the same type as Li₂SeO₃. However, these results are not in agreement with those obtained by Moret et al.14 for Li₂TeO₃ synthesised by solid-state reaction, which had monoclinic symmetry with cell parameters a = 5.064, b = 9.540, c = 13.630 Å, and $\beta = 95.35^{\circ}$. The tellurites Na_2TeO_3 and K_2TeO_3 have been known for a long time and their respective d values are found in the A.S.T.M. card index, but neither their structures nor their unitcell parameters have been determined. The d values obtained in this study for K₂TeO₃ do not coincide with those mentioned in the A.S.T.M. index, and so must relate to a different solid phase. The rubidium and caesium tellurites have also been described ¹⁵ although their crystallographic parameters have not been published. The cause of these inaccuracies lies in the difficult and laborious crystallisation of the products obtained by solid-state reactions or in solution.

An interesting structural variation can be observed in

 ¹³ O. N. Breusov, T. V. Revzina, and N. A. Druzn, Zhur. neorg. Khim., 1965, 10, 1990.
 ¹⁴ J. Moret, D. Cachau-Herreillat. A. Norbert, and M. Maurin,

¹⁴ J. Moret, D. Cachau-Herreillat. A. Norbert, and M. Maurin, Compt. rend., 1971, **C272**, 1971.

¹⁵ J. Dobrowolski, Roczniki Chem., 1966, 40, 1813.

the potassium compounds studied, where there is a progressive increase in crystal symmetry: K_2TeO_4 (monoclinic) $\longrightarrow K_4Te_2O_7$ (orthorhombic) $\longrightarrow K_2TeO_3$ (tetragonal). A cubic modification of K_2TeO_3 or a nonstoicheiometric derivative of this compound is thought to exist and the preparation of this material is being studied.

EXPERIMENTAL

Reagents and Techniques —The compound TeO_3 ·H₂O was obtained by thermal decomposition of H₆TeO₆ (AnalaR, B.D.H.) to constant weight at 200 °C. The solid product is amorphous to X-rays and was characterised by the usual techniques of chemical anslysis ¹⁶ (Found: Te, 65.8.

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1977, Index issue.

Calc.: Te, 65.9%) and thermal analysis (Found: weight loss, 15.7. Calc.: 15.8%). Tellurium trioxide, a yellowish amorphous solid, was prepared by complete dehydration of H_6TeO_6 by heating at 300 °C. Alkaline-metal hydroxides were supplied by Scharlau p.a.

The X-ray diffraction patterns were obtained using a Philips PW-1310 generator equipped with a chart recorder and cylindrical cameras of 114.6-mm internal diameter. Nickel-filtered Cu- K_{α} radiation was used. The patterns are available as Supplementary Publication No. SUP 22252 (6 pp.).*

The densities were determined by solid picnometric methods, using CCl_4 as the dispersant liquid.

[7/1493 Received, 17th August, 1977]

¹⁶ K. Kodama, 'Methods of Quantitative Inorganic Analysis,' Interscience, New York, 1963.